SEMIDIURNAL LUNAR TIDE AND IONOSPHERIC PLASMA BUBBLES OVER BRAZIL

<u>Igo Paulino¹</u>, Ana Roberta Paulino², Cristiano Max Wrasse³, A mauri Fragoso de Medeiros¹, Ricardo Arlen Buriti¹, Hisao Takahashi³

¹Universidade Federal de Campina Grande, PB, Brazil; ²Universidade Estadual da Paraíba, PB, Brazil; ²Instituto Nacional de Pesquisas Espaciais, SP, Brazil.

Abstract: Using OI6300 airglow images collected over São João do Cariri (7.4°S, 36.5°W), the start time and zonal drifts of equatorial plasma bubbles (EPBs) were calculated. A strong day-to-day variability was observed in the calculations due to the complex dynamics of the nighttime thermosphere-ionosphere system near the equator. The present work investigated the contribution of the semidiurnal lunar tide (SLT) M₂ during period form 2000 to 2007, which includes high and low solar activities. Besides the influence of the solar cycle on those parameters, the seasonal effects were investigated as well. Regarding the start time of EPB, the M₂ amplitude was 13.5 min, while the amplitude of the M₂ in the EPB zonal drifts was 5.6% of the average values. Influences of the seasons and solar activity on the amplitudes of the SLT tide were investigated as well. The results suggest that the M₂ has a significant influence on the EPB appearance and development over the Brazilian equatorial region.

Acknowledgment: We thank the support of Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under contract 306063/2020-4

References: <u>https://doi.org/10.5194/angeo-38-437-2020</u> and https://doi.org/10.5194/angeo-2021-38

Session: Ionosphere and High Atmosphere Oral or Poster: Oral